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B. M O L I N 3 AND Š. M A L E N I C A4

1Department of Environmental Studies, Graduate School of Frontier Sciences,
The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

2Faculty of Environment and Information Sciences, Yokohama National University,
79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan

3Ecole Supérieure d’Ingénieurs de Marseille, 13451 Marseille cedex 20, France
4Bureau Veritas, 17bis Place des Reflets, la Défense 2, 92400 Courbevoie, France
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A row of fifty identical, truncated vertical cylinders is submitted to regular head
waves, with wave periods in a narrow range around the period of the so-called
Neumann trapped mode. The free-surface elevation is measured at 14 locations along
the array. Response amplitude operators of the free-surface motion are compared
with numerical predictions from a potential flow model. Resonance effects, at wave
periods equal to or larger than the critical one, are found to be much less than given
by the numerical model. It is advocated that these discrepancies are due to dissipative
effects taking place in the boundary layers at the cylinder walls. An artificial means is
devised to incorporate dissipation in the potential flow model, whereby the cylinder
walls are made slightly porous; the inward normal velocity of the flow is related to the
dynamic pressure. The coefficient of proportionality is based on existing knowledge
for circular cylinders in oscillatory flows. With this modification in the numerical
code, excellent agreement is obtained with the experiments. The numerical model is
further used for the case of a very long array composed of 1000 cylinders; it is found
that with dissipation at the cylinder walls, the wave action steadily decreases along the
array, even for wave periods substantially larger than the critical one. On the other
hand, at wave periods less than the critical one, dissipation plays a negligible role;
the observed decay is solely due to diffraction effects. Implications of these results
for very large structures such as column-supported floating airports are discussed.
In particular, it is concluded that scale effects may be an important issue in the
experimental analysis of such multi-column structures.

1. Introduction
In 1997 Maniar & Newman showed, through numerical computations, that resonant

effects can take place when regular wave systems interact with long cylinder arrays,
leading to large amplifications of the free-surface elevation and hydrodynamic loads,
as compared to the single cylinder case. These results were obtained within the frame
of linearized potential flow theory.

The main relevant parameters for these resonant phenomena to occur are the
cylinder spacing to wavelength ratio and, to a lesser extent, the cylinder radius to
spacing ratio. They are usually expressed as k0d and a/d, where k0 is the wavenumber
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(k0 = 2π/L, L being the wavelength), 2d the cylinder spacing (axis to axis), and a the
radius.

The first resonant region occurs when k0d is slightly less than 1
2
π (meaning a

wavelength slightly larger than twice the cylinder spacing). Maniar & Newman
(1997) refer to this as the Neumann trapped mode case, with reference to Callan,
Linton & Evans (1991) who showed that for a single cylinder between two parallel
walls there exists a trapped mode at a neighbouring k0d value; as the number of
cylinders in the array increases to infinity, the two geometries become equivalent (one
single cylinder in a channel or an infinite row of equally spaced cylinders).

Further, Maniar & Newman (1997) discovered other resonant regions, for k0d
values around π (the Dirichlet trapped mode) and at higher k0d values (near-trapped
modes).

From a practical viewpoint, these strikingly large water-surface elevations or wave
loads could be a serious problem for a floating structure supported by a large number
of vertical cylinders, such as is now being studied in Japan as a possible alternative
to a land-based airport. In order to investigate what really happens in practice,
comprehensive experiments are conducted in a wave tank. An array of 50 identical
cylinders is submitted to regular waves with associated periods in the Neumann
trapped mode range (the Dirichlet trapped mode and other near-trapped modes are
of lesser concern since they occur at shorter wavelengths where the wave energy is
reduced). The measured elevations, in-between the successive cylinders, are compared
with calculated results from a potential flow code originally developed by Kagemoto
& Yue (1986) and further improved by Murai, Kagemoto & Fujino (2000). In the
resonant region, it is found that the measured elevations are much lower than the
calculated ones.

It is argued that these discrepancies are due to dissipative effects taking place in
the boundary layers at the cylinder walls. Since such viscous effects are difficult to
accommodate within a potential flow model, an artificial means is employed that
permits the dissipation of a controllable amount of energy at the solid boundaries;
it consists in making them slightly porous, by relating the normal flow velocity to
the hydrodynamic pressure. The choice of the coefficient of proportionality is made
by reference to the two-dimensional case of a fixed cylinder in low-KC oscillatory
flow, first studied theoretically by Stokes (1851) and then experimentally by numerous
investigators (e.g. Sarpkaya 1986; Troesch & Kim 1991; Bearman & Russell 1996).

The porous wall modification is easy to implement in the numerical model, or
in a quasi-analytical method such as proposed by Linton & Evans (1990), which is
used for validation. It is then found that the calculated elevations are in very good
agreement with the measured ones.

Numerical results are then presented for a very long array consisting of 1000
cylinders, with and without energy dissipation, and for a rectangular system of
16× 80 cylinders. The implications for full-scale structures are discussed.

2. Experimental campaign
2.1. Set-up

Fifty identical vertical truncated cylinders were fixed at equal distances in a water
tank, as shown in figure 1. The horizontal dimensions of the tank are 50 m × 30 m
and the water depth at the time of the experiments was 2.2 m. The diameter of the
cylinders was 0.165 m and their draught 0.215 m. This may look a shallow draught
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Figure 1. Geometry of the array of 1× 50 cylinders.

but, at wave periods around 0.7 s, the wave action is much decreased at the foot of
the cylinders (by a factor close to 6) and the finite draught effects are quite limited,
as will be made clear later in the text.

They were arrayed in head waves, as shown in figure 1, and the centre-to-centre
distance (2d) between adjacent cylinders was set to be 0.330 m (twice the diameter)
for all the cylinders. This means an a/d ratio of 0.5. Each cylinder was fixed to a
large steel bar via a rigid pipe so that the wave-induced oscillations of the cylinders
were constrained. The distance between the cylinders was carefully adjusted by use of
a specially constructed gauge. It was also checked that the axes of the cylinders were
centred on a line drawn perpendicular to the wave-paddles on the bottom of the tank.
The probable set-up error for the axis-to-axis distance between adjacent cylinders is
estimated to be less than 0.5 mm while the probable lateral excursion of the cylinders
from the line perpendicular to the wave-paddles is estimated to be less than 1 mm.
The free-surface elevations among the cylinders were measured by capacitance-type
wave probes at 14 locations, along the centreline of the array at exactly the same
distance from the nearest two cylinders. The specific locations of the wave probes
are 1-2, 4-5, 7-8, 10-11, 13-14, 16-17, 19-20, 22-23, 26-27, 30-31, 34-35, 38-39, 46-47,
50-51, where i-(i + 1) indicates that the corresponding wave probe was located right
in-between the ith cylinder and the (i + 1)th cylinder, counted from the head of the
array. The expected maximum error of the measured surface elevations estimated
from the calibrations of the wave probes is less than 0.5 mm. As will be described
below, incident regular waves of three different wave heights (double amplitudes),
1 cm, 2 cm, 3 cm, were used in the experiments. Strict care was taken that the actual
waveheight was within the allowable difference (±10%) from its prescribed value.
Furthermore, the experiments were conducted with time intervals of more than 30
min so that the water surface in the tank was completely calm before the wavemaker
was initiated.

2.2. Results and comparisons with linearized potential flow theory

Figure 2 shows the response amplitude operators (RAOs) of the vertical motion of
the free surface, at the 14 gauges along the array, in regular waves of 2 cm waveheight
and of periods 0.60, 0.65, 0.68, 0.69, 0.70, 0.71, 0.72 and 0.75 s. The RAOs were derived
through Fourier analysis of the measured records. They are compared with calculated
values, using the numerical model described in Murai et al. (2000). All tests were
duplicated or in some cases triplicated, so their results appear as ‘1st’, ‘2nd’ and ‘3rd’
in the figures.

According to Maniar & Newman (1997), for a radius to half-spacing a/d ratio of
0.5, and for 50 cylinders, the maximum amplification is attained for k0d = 1.388911
(their table 3), that is, in our experiments, a wave period of 0.6914 s. In this wave
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Figure 2. For caption see facing page.
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Figure 2. Response amplitude operators of the free-surface motion along the array. Measured vs.
calculated values. Waveheight 2 cm. Wave period (a) 0.60 s; (b) 0.65 s; (c) 0.68 s; (d ) 0.69 s; (e) 0.70 s;
(f ) 0.71 s; (g) 0.72 s; (h) 0.75 s.
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condition, the peak value of the RAO is attained in the middle of the array. In the
same table, Maniar & Newman (1997) give the resonant k0d values for arrays of 25
(k0d = 1.382053) and 10 (k0d = 1.346352) cylinders, that is, respectively, wave periods
of 0.6931 and 0.7023 s. As written by Newman (1997), it can be inferred that, at a
wave period of 0.6931 s, two modulations would be observed along the 50 = 2 × 25
cylinders array, whereas at 0.7023 s, five modulations would be seen.

Maniar & Newman’s results refer to infinite draught cylinders, whereas ours are
truncated at a draught of 0.215 m, that is, for wave periods around 0.7 s, about 30%
of the wavelength. The bottoms of the cylinders are hardly reached by the wave
action, which is reduced by a factor of about 6 as compared to its value at the free
surface. It was checked numerically that practically identical results are obtained in
either case (infinite draught or 0.215 m draught ). This point is further commented
on in § 4 (see figure 5(a)), where it is observed that the finite draught results in a very
small shift of the resonant periods, of about −0.002 s.

As expected from Maniar & Newman’s results, figure 2(d ), at the wave period 0.69 s
shows calculated RAOs far above 10 by the middle of the array. The experimental
values do not exceed 3.5, at the head of the array, and they decay to less than 1
beyond the twelfth cylinder.

Similarly, figure 2(e), at the wave period 0.70 s, reveals about four modulations
along the array for the calculated RAOs, with maximum values around 5. The
experimental results do not exhibit these four modulations, and do not exceed 3 at
the head of the array, while they decay to less than 2 at its rear part.

In figure 2(f ), corresponding to a wave period of 0.71 s, about six modulations
are given by the numerical computations, with peak RAO values around 4. Again
the experimental results are much lower, with decaying values toward the end of the
array. Similar results are obtained at the larger wave periods of 0.72 and 0.75 s; the
measured elevations are markedly lower than the calculated ones at the rear part of
the array.

On the other hand, very good agreements between numerical and experimental
results are observed in figures 2(a)–2(c), where the wave periods are below the critical
value 0.69 s. As observed by Maniar & Newman (1997), at these wave periods,
diffraction effects result into a quick decay of the free-surface elevation along the
array.

The experimental results shown in figures 2(d )–2(h) raise some questions with
regard to their validity, such as: Has a steady state been attained? Haven’t nonlinear
effects, such as wave breaking, come into play? What about parasitic effects such as
reflections from the sidewalls, or from the beach?

To answer the first question, we produce in figure 3 the time traces of the free-
surface elevations, as measured at gauges 7, 13, 19, 26, 34 and 46, at the 0.70 s wave
period. It can be seen that a steady state is attained, except by the end of the array
where the increases in amplitude that occur after some time are due to reflection
from the beach (which was not very efficient at such low wave periods). Experimental
values as produced in the figures were extracted from the measured values at time
instants between 60 and 80 s, when transients have died out and reflections from the
beach have not arrived yet.

To answer the second question, tests have been replicated at wave heights of 1
and 3 cm. The free-surface RAOs obtained from the measurements are shown in
figures 4(a)–4(c), which correspond to figures 2(d ), 2(e) and 2(g). It can be observed
that the experimental RAOs derived from the three wave heights coalesce into nearly
the same points. Also, no wave breaking was observed visually during the tests. It
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Figure 3. Time traces of the free-surface elevation at 6 gauges along the array. Wave period 0.70 s.
Waveheight 2 cm. (a) point 7; (b) point 13; (c) point 19; (d ) point 26; (e) point 34; (f ) point 46.

can therefore be concluded that nonlinear effects are not present and that other
explanations must be looked for to explain the discrepancies between calculations
and measurements.

Because of the large width of the tank (30 m), sidewall effects are not believed to
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Figure 4. Calculated and measured RAOs of the free-surface elevation for three different
waveheights. Wave period (a) 0.69 s; (b) 0.70 s; (c) 0.72 s.

be a relevant issue. The time taken for the diffracted waves to reflect off the walls
and reach back to the array is about 55 s, at wave periods around 0.7 s. No evidence
of such reflections can be seen on the time records.

Another possible explanation for the discrepancies would be that the cylinders are
not perfectly aligned nor equally spaced. To investigate this point, calculations were
performed where the cylinders are displaced from their reference positions by ±5%
of their spacing, in the transverse and/or longitudinal directions. Nearly identical
results were obtained.

As a result, it looked as if another explanation had to be found. What we may think
of, when faced with such discrepancies between measured values and results from
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potential flow calculations, is ‘viscous effects’. This point is analysed in the following
section.

3. Analysis of energy dissipation in the boundary layers
It is anticipated that the observed discrepancies, between measurements and nu-

merical results, are due to viscous effects which are absent from the potential flow
model.

To analyse these viscous effects we refer to the well-known and closely related
problem of a two-dimensional circular cylinder in uniform oscillatory flow. This has
received much attention, both through theory (Stokes 1851; Wang 1968; Hall 1984)
and experiments (Honji 1981; Bearman et al. 1985; Sarpkaya 1986, to cite but a few).

For smooth cylinders, the flow is completely characterized by the Keulegan–
Carpenter number KC and by the Stokes parameter β, defined as

KC = 2π
A

D
, β =

D2

νT
,

where D is the cylinder diameter, A the fluid motion amplitude away from the cylinder,
ν the kinematic viscosity and T the oscillation period.

In the asymptotic limit when KC → 0 and β → ∞, the theoretical solution, in the
laminar regime, was given by Stokes in 1851. He found that, to the leading order in
β−1/2, the additional force due to viscosity is given by

F = Re

{
(1− i)ρAω2D2

√
π

β
e−iωt

}
+ O(β−1), (3.1)

the outer flow velocity being

U(t) = Aω cosωt.

When we rely upon the Morison equation to express the loading, this means a drag
coefficient given by

CD =
3π3

2KC

1√
πβ
, (3.2)

while the added mass coefficient is slightly modified from its potential flow value:

Cm = 2 +
4√
πβ
.

In our experiments, the cylinder diameter D is 16.5 cm and the critical wave period
is 0.7 s, while the wave amplitude varies from 0.5 to 1.5 cm. Hence the β parameter
is constant, β ' 40 000, while KC , based on the incident wave amplitude, goes from
0.19 to 0.57. The experiments give RAOs of the free-surface motion ranging from
less than 1 up to 3 or 4, in resonant conditions. The practical KC range, by the free
surface, is therefore from 0.2 up to 2. At the feet of the cylinders, KC values are much
lower, but this is of no concern since most of the energy dissipation takes place close
to the free surface (the amount of dissipated energy varies roughly as exp(2k0z) along
the cylinder).

From reference experimental result, it can be stated that, at β ' 40 000 and KC

between 0.2 and 2, the flow remains attached to the cylinder wall, but that the CD
values largely exceed the Stokes prediction.

For instance, Sarpkaya (1986) presents results for a circular cylinder in a U-tube



122 H. Kagemoto, M. Murai, M. Saito, B. Molin and Š. Malenica

at β = 11 240, KC being as low as 0.8. For KC less than 2.0, the measured drag
coefficients turn out to be about 5 times as large as given by equation (3.2).

Other experimental results are given by Troesch & Kim (1991) who oscillate a
circular cylinder in still water, at an oscillation frequency very close to the resonant
frequency of the mechanical system. They present results at β values of 23 200 and
48 600, KC ranging from 0.08 up to 0.5. They obtain results very similar to Sarpkaya’s,
that is, drag coefficients 4 to 5 times larger than the Stokes value over all the ranges of
KC . They conclude that the Stokes formula can still be used, provided the kinematic
viscosity be replaced with an effective eddy viscosity, about 20 to 25 times as large.

Further, Bearman & Russell (1996) also present results from very careful experi-
ments, at β numbers ranging from 20 000 up to 60 000. They conclude that the drag
coefficient is approximated well by the simple formula

CD = 2CDStokes + 0.08KC

all over the investigated KC range, from 0.1 up to 2. This means a CD value about
three times the Stokes prediction at KC ' 1.3.

Why the CD values obtained by Sarpkaya, Troesch & Kim, and Bearman & Russell
do not quite agree is not clear. They all exceed the Stokes prediction, by a factors
ranging from 2 to 5, even at very low KC . It is known from theoretical analysis
(Hall 1984) that at a critical KC value given by K∗C = 5.778β−1/4 (that is K∗C ' 0.4
in our case) three-dimensional instabilities appear in the boundary layers and result
in the apparition of ‘mushroom’ vortices, first described by Honji (1981). However,
observations show that Honji instabilities appear at much lower KC values, from
KC = 0.18 at β ' 40 000 (Sarpkaya 2001, personal communication).

In our case of a vertical cylinder in wave-induced flow, energy is also dissipated
through frictional forces acting in the vertical direction, associated with the vertical
component of the flow velocity. In the laminar regime, this can be estimated through
the Stokes model of the oscillating flat plate (see e.g. Sarpkaya 1993 who considers
the case of a long cylinder in oscillatory axial flow). Then we find that, at the k0a
values of our tests, the vertical friction forces dissipate about as much energy as the
horizontal ones.

The combination of horizontal and vertical flow components at the cylinder wall
should promote instabilities in the boundary layer (Sarpkaya 2001, personal commu-
nication). It can therefore be concluded that energy dissipation, in our experiments,
by far exceeds the amount that can be estimated from the simple analysis based on
the horizontal flow component, in the laminar regime. Whether it is 5 or 10 or 20
times larger is difficult to know. In the calculations described in the next section,
somewhat arbitrarily, we have assumed a ratio of 10.

Another point of concern is that the cylinders are truncated and that, as a result,
separation is likely to occur at their lower edges. Their draughts being 21.5 cm, at 0.7 s
wave periods, the amplitude of the incoming wave flow motion at the cylinder keels
is reduced by a factor of about 6, as compared to its free-surface-level value. Using
drag coefficients such as given by Thiagarajan & Troesch (1994), it can be concluded
that the magnitude of drag forces that result from flow separation is small, and that
the energy dissipated through this effect is negligible as compared with the energy
dissipated in the boundary layers (see the Appendix).

4. Modification of the numerical model
To render the effect of energy dissipation in the boundary layers, within our

potential flow model, we use an indirect means whereby the cylinder walls are made
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slightly ‘porous’. Losses of head result from the fluid particles flowing in and out,
which can be monitored to dissipate the proper amount of energy. Similar techniques
are used in coastal and harbour engineering to simulate partly reflective boundaries.

The boundary condition at the cylinder walls is taken as

∂φ

∂R
= −iε

φ

a
, (4.1)

where a is the cylinder radius and the velocity potential Φ(x, y, z, t) is related to φ
through

Φ(x, y, z, t) = Re{φ(x, y, z)e−iωt},
and ε is a small constant.

To determine realistic values for ε, we refer to the two-dimensional cylinder case,
in harmonic flow. When the boundary condition (4.1) is taken at the wall, we readily
obtain the velocity potential of the flow, to the leading order in ε, given by

φ(R, θ) = Aω cos θ

[
R + (1 + 2iε)

a2

R

]
+ O(ε2), (4.2)

and the hydrodynamic force on the cylinder is

F(t) = Re
{−2iπρa2Aω2(1 + 2iε)e−iωt

}
. (4.3)

Identifying the energy dissipating components in (3.1) and (4.3), we obtain the ε
value

ε =
1√
πβ

=
1√
π

√
νT

D
. (4.4)

In the laminar flow regime, with β ' 40 000, we obtain ε = 0.003. As argued in § 3,
the actual ε value is expected to be much larger.

Therefore the two values ε = 0.003 (laminar boundary layer) and ε = 0.03 (turbulent
or nearly turbulent boundary layer) were selected for the calculations. The ε = 0.03
value was first chosen somewhat arbitrarily. As will appear in the next section, it
turned out to provide results in good agreement with the measurements.

The boundary condition (4.1) was implemented in the potential flow model. It was
imposed at the vertical walls of the cylinders, while the usual no-flow condition was
kept at the bottom. In Kagemoto & Yue’s interaction theory, the fluid domain around
each cylinder is divided into two regions: an inner subdomain below the cylinder and
an outer domain, where the scattered velocity potential is expressed as:

φSi (ri, θi, z) =
cosh k0(z + h)

cosh k0h

∞∑
n=−∞

A0niHn(k0ri) exp (inθi)

+

∞∑
m=1

cos km(z + h)

∞∑
n=−∞

AmniKn(kmri) exp (inθi), (4.5)

where (ri, θi, z) is the cylindrical coordinate system fixed to the ith cylinder and Hn,Kn

are the nth-order Hankel function of the first kind (Hn = Jn + iYn) and modified
Bessel function of the second kind, respectively. The water depth h is assumed to
be constant, and k0 and km are the wavenumbers of the progressive and evanescent
modes, respectively. Implementing the boundary condition (4.1), rather than the usual
no-flow condition at the wall ri = a, merely results in a slight modification of the
linear systems that relate the Amni coefficients.

For validation, the same development was performed in the quasi-analytical model
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due to Linton & Evans (1990). This model applies to cylinders standing on the
sea-floor. The diffraction potential φD is expressed as

φD =
cosh k0(z + h)

cosh k0h

Nc∑
i=1

∞∑
m=−∞

AimZ
i
m0Hm(k0ri) exp (imθi), (4.6)

where Zi
m0 = J

′
m(k0ai)/H

′
m(k0ai).

The use of Graff’s theorem for Bessel functions permits us to enforce the boundary
condition (4.1) on each cylinder. The interaction coefficients Aim are found to verify
the linear system of equations:

Aim

[
1 + i

ε

k0ai

Hm(k0ai)

H
′
m(k0ai)

]

+

Nc∑
j 6=i

∞∑
n=−∞

AjnZ
j
n0 exp (i(n− m)αji)Hn−m(k0Rji)

[
1 + i

ε

k0ai

Jm(k0ai)

J
′
m(k0ai)

]

= −Ii exp (im(π/2− β))

[
1 + i

ε

k0ai

Jm(k0ai)

J
′
m(k0ai)

]
, (4.7)

where Ii = exp (ik0[Xi cos β + Yi sin β]) is the phase correction accounting for the
position (Xi, Yi) of each of Nc cylinders and β is the incident angle of the incoming
wave.

In figures 5(a) and 5(b) we present comparative results obtained with the two
numerical models. Both figures show the RAO of the free-surface elevation, between
cylinders 6 and 7 of the 50 cylinder array, versus the wave period which ranges
from 0.67 to 0.75 s. With the Linton & Evans method the cylinders are assumed to be
bottom-seated (at a waterdepth of 2.2 m), whereas with the Kagemoto & Yue method,
calculations are performed at draughts of 0.645 m (more than half the maximum
wavelength) and 0.215 m (the draught of the tested cylinders). In figure 5(a), the ε
coefficient is set equal to zero (no energy dissipation), while in figure 5(b) it is equal to
0.03. It can be observed that the Linton & Evans method (bottom-seated cylinders)
and the numerical model at 0.645 m draught provide identical results, within graphical
accuracy, both for ε = 0 and ε = 0.03. This agreement validates the modifications
performed in the codes. For the 0.215 m draught cylinders, a small shift toward the
lower periods can be observed. This shift is of about 0.002 s at wave periods around
0.7 s.

This decrease of the resonant period is in qualitative agreement with the results
obtained by Linton & Evans (1992) who derive the trapped mode frequencies for
vertical truncated cylinders at the centreline of a channel. For the same a/d value
of 0.5, they find (see their table 1) that, at a draught to radius ratio D/a of 2, the
resonant k0d value is 1.41, while at D/a ratios of 4 and 5, it is equal to 1.39, that is
the same value as for a bottom-standing cylinder. In our experiments, the draught to
radius ratio is 2.6 and the −0.002 s shift means a resonant k0d value slightly below
1.40.

5. Comparison with experimental results
Figures 6(a)–6(e), corresponding to figures 2(c)–2(g), show the newly calculated

free-surface elevations along the array, for wave periods of 0.68, 0.69, 0.70, 0.71 and
0.72 s. In figure 6(a), relating to a wave period of 0.68 s, below the resonant range,
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Figure 5. Calculated values of the RAOs of the free-surface motion, between cylinders 6 and 7,
vs. the wave period, for different drafts of the cylinders. (a) No energy dissipation. (b) With energy
dissipation (ε = 0.03).

nearly identical numerical results are obtained whatever the ε value. Results for lower
wave periods are not shown, but the same conclusion was reached: energy dissipation
plays a negligible role at these wave periods and the rapid decay along the array is
due to diffraction effects. In the subsequent figures, relating to the resonant range, the
numerical results appear to be quite sensitive to the ε value. With the larger ε value of
0.03, the agreement with the measured values is quite good. (The experimental results
shown in the figures are those referred to as ‘1st’ in figures 2c–2g). In figure 6(b),
relating to the resonant period of 0.69 s, we present numerical results for other ε
values, that is 0.01, 0.02 and 0.04. It can be observed that numerical results at ε values
less than 0.02 are far off the experimental results, while the ε = 0.03 and ε = 0.04
are quite close. These results confirm our choice of ε = 0.03, as a minimum value to
represent energy dissipation in the boundary layers.

It can also be noted in the figures that the viscous attenuation is stronger in the
lee part of the array, as the waves lose energy while they travel along. As a result,
attenuation is also observed when the wave period is far beyond the resonant range,
as is shown in the following section.

As predicted by Maniar & Newman (1997), another type of trapped mode, which
they called the Dirichlet trapped mode, also occurs for the present array of 50
cylinders. For a radius to half-spacing a/d ratio of 0.5, and for 50 cylinders, it is
predicted that it takes place at k0d = 3.068774 (their table 3), which corresponds to a
wave period of 0.465 s in the present experiment. Figure 7 shows the calculated RAOs
of the vertical motion of the free surface at the midpoint of the 5th cylinder and
the 6th cylinder in the array of 50 cylinders. It is shown in Maniar & Newman (see
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Figure 7. Calculated values of the RAOs of the free-surface motion, between cylinder 5 and 6 in
the neighbourhood of the Dirichlet-trapped-mode wave period.
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Figure 8. Calculated values of the RAOs of the free-surface motion along the lee-side surface of
cylinder 5 in the neighbourhood of the Dirichlet-trapped-mode wave period.

their figure 4) that the vertical free-surface displacement is antisymmetric about the
midpoint between adjacent cylinders when waves are trapped in the Dirichlet mode,
which explains why the RAO curve in figure 7 displays the steep hollow at the wave
period 0.465 s. On the other hand, the RAO of the vertical free-surface displacement
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Figure 9. For caption see facing page.

increases sharply near the cylinder, as shown in figure 8, which depicts the RAOs of
the vertical displacement of the free-surface at the (lee-side) wall of the 5th cylinder.
With ε = 0.03, the peak RAO value is decreased from 4 to 2.

6. Application of the numerical model to arrays of extremely large numbers
of legs

In this section we present results of calculations performed for geometries consisting
of large numbers of identical truncated cylinders. First, a single array of 1000 cylinders
is considered, then a rectangular arrangement of 16×80 cylinders, more representative
of the legs supporting a floating airport. The spacings, diameters and draughts are
the same as with the 50 cylinder array, except that for the 16× 80 cylinder geometry,
the draught is reduced to 0.11 m.

This practical application raises the question of the ε value to adopt in full scale.
Assuming diameters around 5 m, wave periods of about 4 s, and an effective viscosity
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Figure 9. 1000 cylinder array. Calculated value of the free-surface motion along the array.
Wave period (a) 0.70 s; (b) 0.80 s; (c) 0.90 s; (d ) 1.0 s.

equal to 100 times the molecular viscosity, gives ε = 0.002 when applying equation
(4.4). The dissipation of energy is much reduced, as compared to what is achieved at
model scale. This is an issue that deserves further consideration.

6.1. An array of 1000 cylinders

Figure 9 gives the RAO of the free-surface elevation along the array (between adjacent
cylinders), for wave periods of 0.70, 0.80, 0.90 and 1.0 s, and for the three ε values:
0, 0.003 and 0.03. With no energy dissipation, there is no decay of the free-surface
motion along the array. At the largest wave period (1 s), we may even note that the
RAO steadily increases. With the largest ε value, corresponding to model scale, a very
quick decay can be observed at the lower wave periods (0.7 and 0.8 s). At 0.9 and
1 s the decay is less pronounced. At the intermediate ε value, more representative of
full-scale arrays, the decay is much slower.
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80 columns

16
 c

ol
um

ns

Incident
waves

Point 0 Point 80�

2d

d = 0.165 m

Draft = 0.11 m

Figure 10. Geometry of an array of 16× 80 cylinders.

6.2. An array of 16 × 80 cylinders

In order to see the effect of multiple rows, calculations were conducted for an array
of 16 × 80 cylinders, in which 80 cylinders are arrayed in the longitudinal direction
parallel to the incident-wave propagation while 16 cylinders are arrayed in the
transverse direction, as shown in figure 10. The trapped mode analysis of N cylinders
at the centreline of a channel was given by Evans & Porter (1997). They found that
for N cylinders there are up to N trapped modes, with associated wavenumbers k0d
ranging from 1

2
π down to much lower values than for the single-cylinder case. They

do not provide results for 16 cylinders but, from their findings, we can expect resonant
peaks to occur from a wave period of 0.65 s (k0d = 1

2
π) up to much larger values than

in the single-row case.
This can be seen in figure 11 which shows the surface-displacement-amplitude

characteristics versus the wave period at the two locations shown in figure 10 on the
longitudinal centreline of the array. In figure 11(a), at the weather side, the calculated
RAOs are hardly modified with ε = 0.003. With ε = 0.03, the smaller peaks of the
response are filtered out. On the lee side (figure 11(b)), the free-surface motion is
drastically reduced, all over the wave period range, at the larger value of ε. On the
other hand, at ε = 0.003, the damping effect is much less pronounced.

If we infer that ε ∼ 0.003 relates to the full-scale case and that ε ∼ 0.03 relates to
the model scale, we are led to conclude that model tests cannot be relied upon to
study the wave interaction problem with multiple vertical cylinders.

7. Conclusions
An experimental study has been presented, on regular wave interaction with an

array of 50 cylinders. In the wave period range of the Neumann trapped mode, much
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Figure 11. 16× 80 cylinder array. Calculated values of the RAOs of the free-surface motion
at (a) point 0; (b) point 80 (see figure 10).

less resonance has been observed than predicted by linearized potential flow theory.
This damping phenomenon has been attributed to viscous dissipative effects taking
place within the boundary layers at the cylinder walls. To reproduce these dissipative
effects within the potential flow model, it has been suggested that we render the
walls slightly porous, as is customary in harbour and coastal engineering. With
this modification in the numerical codes, and an appropriate choice of the ‘leakage
coefficient’ ε, very good agreement has been achieved with the experimental results.

Numerical results have also been given for wave periods outside the Neumann
trapped mode range. At lower periods, viscous dissipation has no effect; the quick
decay of the wave action along the array is due to diffraction effects, as noted
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by Maniar & Newman (1997). At larger periods, potential flow models predict no
attenuation, whatever the length of the array. When viscous dissipation has been
introduced, it has been found that the wave action slowly decreases along the array,
even for wave periods well above the critical range. These results have been confirmed
by calculations performed in the case of a very long array, composed of 1000 cylinders,
and for a rectangular system composed of 16× 80 cylinders. This latter geometry has
some relevance to the projects of multi-column supported floating airports, that are
considered in Japan.

This practical application raises the problem of the leakage coefficient ε to be used
in full scale, when the Stokes parameter of the flow attains values as large as 5× 106

and the Keulegan–Carpenter number is less than unity. Knowledge is lacking on this
point. It is important to be able to find out the importance of scale effects for the
experimental study of such structures.

For the particular geometry considered here of a truncated cylinder, it has been
shown that the flow separation at its base induces negligible energy dissipation, as
compared to what takes place within the boundary layers at the vertical walls. For
smaller draught to diameter ratios, and/or in full scale (where the relative contribution
of the boundary layers decrease), flow separation at the lower edges could become
significant. An extension of the numerical model, to take this effect into account,
would be to render the keel of the cylinder porous as well, and there to apply a
quadratic discharge law. An iterative resolution method would have to be followed
to solve the diffraction problem (e.g. see Molin 2001).

The authors acknowledge the constructive comments of the reviewers. They are
grateful to Professor T. Sarpkaya for his assistance in the analysis of the energy
dissipation in the boundary layers.

Preliminary results were given in the Proceedings and in the Discussions Report
of the 14th International Workshop on Water Waves and Floating Bodies, held at
Port-Huron, Michigan, in 1999 (R. F. Beck & W. W. Schultz editors).

Appendix. Energy dissipated through flow separation at the lower edges, as
compared to the energy dissipated at the walls

In this Appendix we consider the case of one isolated truncated cylinder, submitted
to a regular wave system, and we compare the energies dissipated through both
processes.

We use results from experiments performed by Thiagarajan & Troesch (1994) who
investigate the hydrodynamic heave damping of a vertical cylinder. Its diameter is
0.457 m and its draught 1.219 m. Forced heave motions are performed at a frequency
(0.41 Hz) close to the heave natural frequency, resulting in very accurate measurements
of the damping force, since the inertia and restoring forces nearly cancel each other.
This damping force is partly due to friction at the vertical walls, and partly due to
pressure forces induced by flow separation at the lower edges (as a result of the large
draught , radiation damping is negligible). The friction component is linearly related
to the heave velocity, while the pressure component is roughly proportional to the
square of the heave velocity. By oscillating the model at varying amplitudes, the two
contributions can be separated easily.

In Thiagarajan & Troesch’s experiments, the β parameter, based on the diameter,
is equal to 89 236. This is somewhat higher than the β value in our experiments,
but the damping loads induced by flow separation should be little sensitive to the
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Reynolds number, in so far as the edges are sharp. For KC numbers in the range
0.2–1.0, Thiagarajan & Troesch find that this component of the damping force can
be expressed as

Fs(t) = − 1
2
ρCDπa

2Ż(t)|Ż(t)| (A 1)

where Ż(t) is the heave velocity and the drag coefficient CD takes a value close to 1.5.
This is for a heaving cylinder in still water or, equivalently, for a fixed cylinder in

uniform oscillatory flow (with a change in sign).
These results can be used in wave flows in so far as the wavelength is long

as compared to the diameter, so that the incoming flow be nearly uniform at the
cylinder bottom. In our experiments, it is not really the case (at 0.7 s period, the
wavelength is about 4.5 times the diameter), but we shall nevertheless apply equation
(A 1), with the vertical fluid velocity

W (t) = Aω exp (k0zb) sinωt. (A 2)

Here, A is the free-surface motion amplitude and zb is the vertical coordinate of
the cylinder base, with respect to the still free surface. Then, the force due to flow
separation takes the form

Fs(t) = 1
2
ρCDπa

2A2ω2 exp (2k0zb) sinωt| sinωt|. (A 3)

This can be expected to provide a good approximation of the actual force, even
though the cylinder diameter is not really small when related to the wavelength.

The dissipated energy over a wave period is then

∆Es =

∫ T

0

Fs(t)W (t) dt = 4
3
ρCDπa

2A3ω2 exp (3k0zb). (A 4)

This dissipated energy is to be related to the one that takes place at the vertical
walls of the cylinder, when they are made slightly porous and the boundary condition
(4.1) is applied. The energy dissipated over a wave period is given by

∆Ew =

∫ T

0

dt

∫ ∫
Sw

ρ
∂Φ

∂t

∂Φ

∂R
dS = ρπ

ε

a

∫ ∫
Sw

φφ∗ dS. (A 5)

At the low wave periods of interest (T ∼ 0.7 s), the wave action is quite diminished
at the cylinder bottom. A good approximation can therefore be obtained by consid-
ering the case of an infinite draught cylinder, for which the velocity potential at the
walls takes the simple form (e.g. see Mei 1983, chap. 7.5):

φ =
Ag

ω
exp (k0z)

∞∑
m=0

2εmim+1

πk0aH ′m(k0a)
cosmθ. (A 6)

where εm = 1 for m = 0 and εm = 2 for m > 1.
This is for a solid cylinder. It is the leading-order term for a slightly porous cylinder.

The dissipated energy over a wave period is then

∆Ew = 4ρε
A2g

k4
0a

2

∞∑
m=0

εm

J ′2m (k0a) + Y ′2m (k0a)
. (A 7)

Writing the two dissipated energies in non-dimensional form, we obtain:



134 H. Kagemoto, M. Murai, M. Saito, B. Molin and Š. Malenica

due to flow separation:

∆Es
ρπa2A2g

= 4
3
CDk0A exp (3k0zb), (A 8)

due to the leakage through the porous walls:

∆Ew
ρπa2A2g

=
4ε

πk4
0a

4

∞∑
m=0

εm

J ′2m (k0a) + Y ′2m (k0a)
. (A 9)

At a 0.7 s wave period, the wavenumber k0 is equal to 8.21 m−1. With zb = −0.215 m
and a = 0.0825 m, keeping A and ε as variables, we obtain:
due to flow separation:

∆Es
ρπa2A2g

= 0.082A, (A in m) (A 10)

due to the leakage through the porous walls:

∆Ew
ρπa2A2g

= 9.80ε. (A 11)

Taking for A the maximum local value obtained experimentally A ∼ 0.05 m, and
ε = 0.03 (turbulent or nearly turbulent boundary layer), we find that ∆Es is less than
1.5% of ∆Ew . So the energy dissipated through flow separation at the lower edges is
negligible, as compared to the energy dissipated in the boundary layers at the vertical
walls.
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